See page 37

Tin Whiskers A "New" Problem

Andy Kostic, Ph.D. Fellow Northrop Grumman Electronic Systems Product Integrity Engineering Baltimore, MD Andrew.Kostic@ngc.com

Charlie Minter Technical Risk Manager Best Manufacturing Practices Center of Excellence College Park, MD Charlie@bmpcoe.org

Electronic Systems

Lead-Free Movement Background

- The negative effects of excessive amounts of lead (Pb) on the human body and the environment are well documented
 - Must be ingested or inhaled
 - U.S. EPA limits
 - Air not to exceed 1.5 micrograms per cubic meter (1.5 µg/m³) averaged over 3 months
 - Drinking water not to exceed to 15 µg per liter
 - Lowest lethal doses reported for lead compounds are around 200 milligrams/kg
- The effects of low dosage of lead (Pb) on the human body and the environment are not well understood

Lead-Free Movement Background

- In 1985, the Swedish government enacted the Chemical Products Act based on the "Precautionary Principle"
 - Precautionary Principle: "When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause-and-effect relationships are not fully established scientifically."
- There is no evidence linking the lead used in electronics manufacturing and products with any harm to humans or the environment
 - Electronics industry uses less than 0.5% of the world's lead consumption

There are a host of issues associated with lead-free

Lead-Free Movement Background

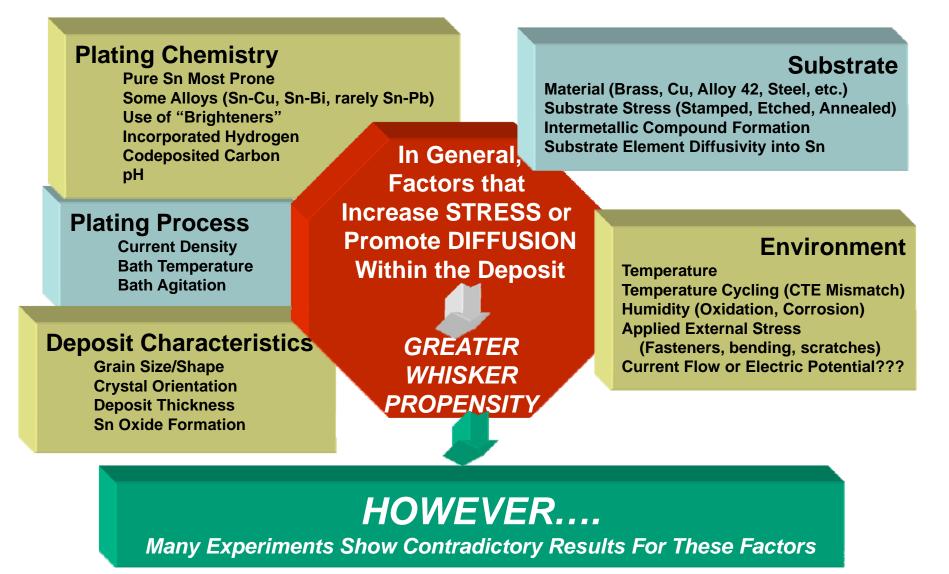
- Fears over *Perceived* harm from lead precipitated legislative action in Europe and Japan
 - Ban on lead (and other substances) scheduled to take effect in July 2006
- Commercial electronic component suppliers are responding to their main market: the commercial electronics industry
 - Using pure tin plate surface finishes on commercial electronic components
 - Not compatible with most military and space mission requirements

There are a host of issues associated with lead-free

What Are Tin Whiskers?

- Spontaneous, single crystal, hair-like growths from surfaces that use lead-free Tin (Sn) as a final finish
 - Electrically conductive
 - May grow in days or years
 - Tin-plated electronic and mechanical parts (e.g., nuts, bolts) grow whiskers

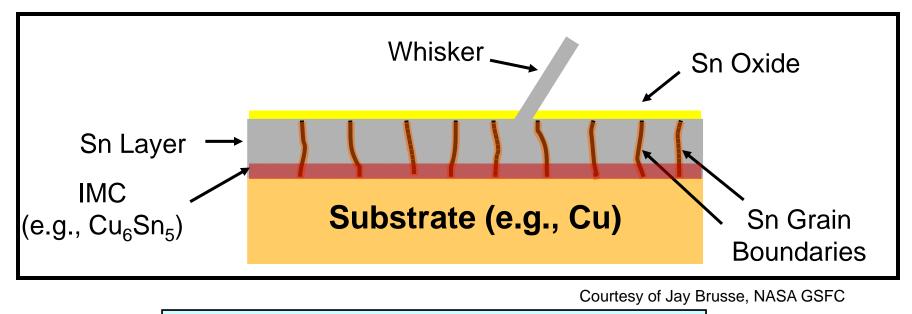
Electronic Systems


- Whisker growth mechanism still not fully understood after microcircuit lid decades of study
 - Much conflicting experimental and documented evidence
- <u>No</u> effective and accepted tests to determine the susceptibility of platings to whisker
- <u>No</u> mitigation technique guarantees protection against whisker formation except the addition of 3% or more of lead to tin

NORTHROP GRUMMAN

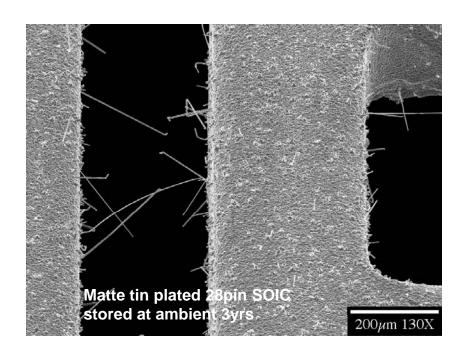
Electronic Systems

What Causes Tin Whiskers?


Courtesy of Jay Brusse, NASA GSFC

One Model for Whisker Growth Mechanism

- 1. Substrate elements (e.g., Cu, Zn) diffuse into Sn along grain boundaries
- 2. Intermetallic Compound (IMC) may form preferentially in grain boundaries
- 3. As a result, stress builds in Sn layer
- 4. To relieve stress, whiskers EXTRUDE through ruptures in Sn oxide



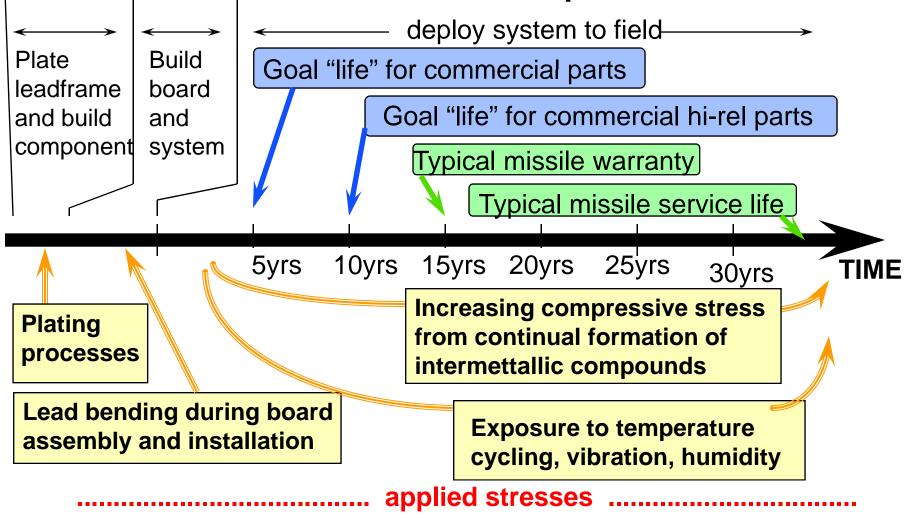
Dormant missiles particularly vulnerable

Why an Issue Now?

- Smaller circuit geometries
 - Whiskers can now easily bridge between contacts
 - Adjacent whiskers can touch each other
 - Broken off whiskers can bridge board traces and foul optics
- Lower voltages

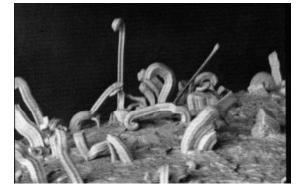
Electronic Systems

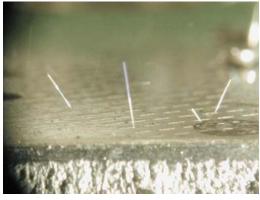
- Whiskers can handle tens of milliamps without fusing
- Manufacturers rapidly going to "green" materials
 - Pure tin plate included
 - Some changes made without notice


Tin Whisker Failure Mechanisms

- Stable short circuit in low voltage, high impedance circuits where current insufficient to fuse whisker open
- Transient short circuit until whisker fuses open
- Plasma arcing in vacuum potentially most destructive whisker can fuse open but *the vaporized tin may initiate a plasma that can conduct over 200 amps!* Atmospheric conditions with additional voltage/current may also experience whisker induced arcs
- Debris/Contamination: Whiskers or parts of whiskers may break loose and bridge isolated conductors or interfere with optical surfaces

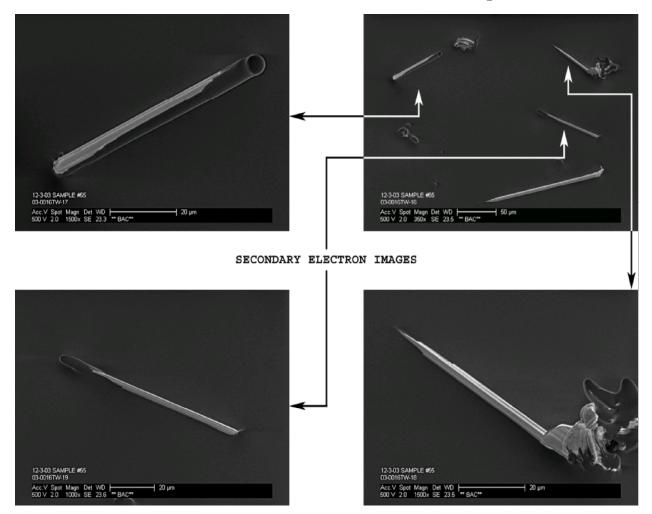

Stress Inputs vs. Time Tin Whisker Growth on Component Leads


Tin Whisker Example


Tin Whisker Examples

Growing on capacitor

On relay hook terminal


On relay armature

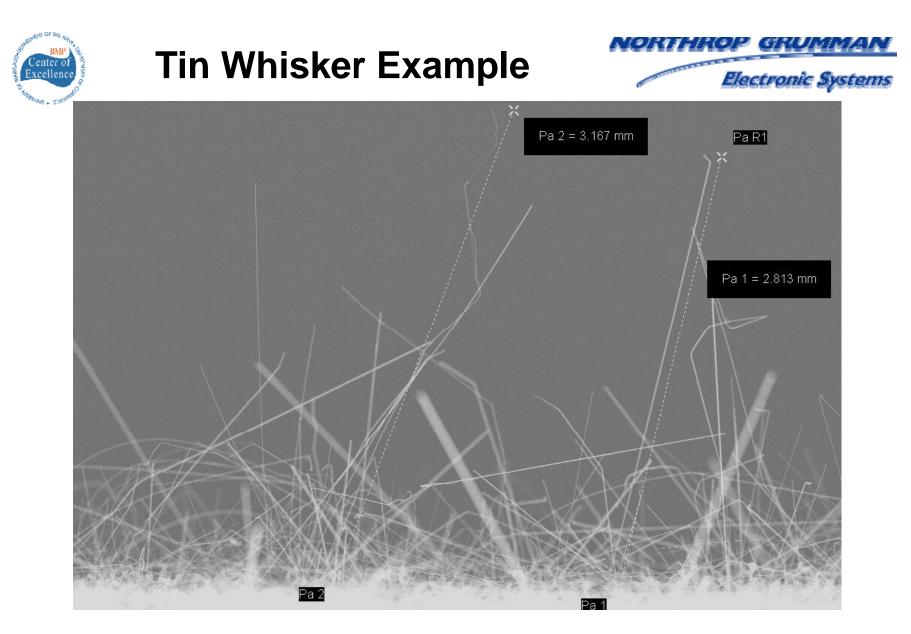
NORTHROP GRUMMAN

Electronic Systems

Tin Whisker Examples

Whiskers penetrating acrylic conformal coating

Courtesy of Tom Woodrow, Boeing

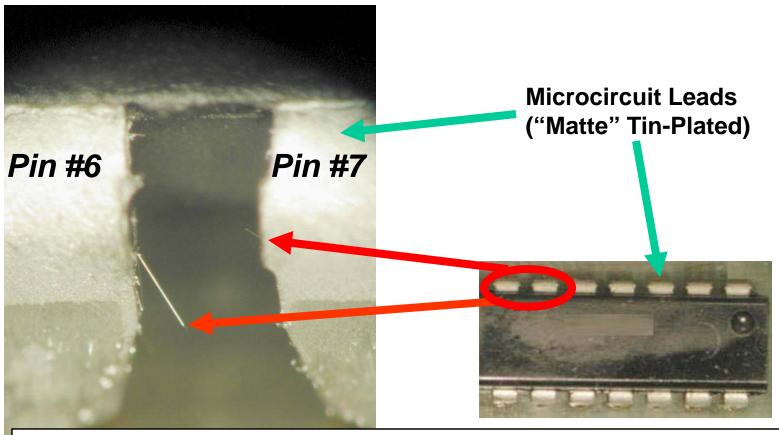

NORTHROP GRUMMAN

Electronic Systems

Tin Whisker Example

Connector Pins (Pure Tin-Plated) ∼10 years old Ó Observed in 2000

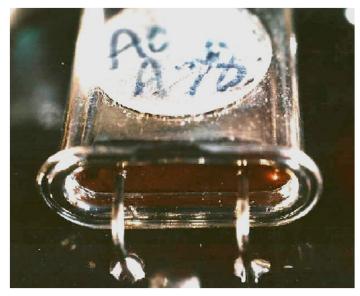
http://www.geindustrial.com/pm/support/dls/dlssb01.pdf



Tin Whisker "Forest" on test coupon in CALCE Tin Whisker Group's collaborative test

Courtesy Bill Rollins CALCE Tin Whisker Group ¹⁵

Documented Failure: Tin Whisker Shorting



Whiskers from this component caused a FAILURE in the electric power utility industry more than **20 YEARS** after fielding the system

TIN WHISKER FAILURE ON OSCILLATOR

THRU HOLE OSCILLATOR. LEAD DIAMETER 18 MILS. BRITE TIN FINISH LEADS AND CASE. SOLDER DIPPED WITHIN 50 MILS OF GLASS SEAL AND HAND SOLDERED TO PWB. EDGE OF Solder die

TIN WHISKER GROWTH NOTED FROM SEAL TO ABOUT 20 MILS FROM EDGE OF SOLDER COAT. ELECTRICAL FAILURE WAS TRACED TO A 60 MIL WHISKER THAT SHORTED LEAD TO CASE.

NASA GSFC Tin Whisker web site http://nepp.nasa.gov/whisker/

August 2004

- Weapon systems that were built between 1985 and 1992 have had documented tin whisker failures
 - Failure rates varied from 1% to 10%
 - Manufacturers of microcircuits/semiconductors
 BEGAN shifting to pure tin in 1996-97
- 6 Satellites: partial or complete loss (Galaxy 3, Solidaridad 1, Direct TV3, and HS 601) 1998-2002
- Airborne radar systems

NORTHROP GRUMMAN

Electronic Systems

	Year**	Application	Industry	Failure Cause	Whiskers on?
22	2000	Commercial Satellite #5	Space (Complete Loss)	Tin Whiskers	Relays
23	2000	Power Mgmt Modules	Industrial	Tin Whiskers	Connectors
24	2001	Commercial Satellite #6	Space	Tin Whiskers	Relays
25	2001	Space Ground Test Eqpt	Ground Support	ZINC Whiskers	Bus Rail
26	2001	Nuclear Power Plant	Power	Tin Whiskers	Relays
27	2001	Hi-Rel	Hi-Rel	Tin Whiskers	Ceramic Chip Caps
28	2002	Commercial Satellite #7	Space	Tin Whiskers	Relays
29	2002	Military Aircraft	Military	Tin Whiskers	Relays
30	2002	Electric Power Plant	Power	Tin Whiskers	Microcircuit Leads
31	2002	Hospital Computer Center	Medical	ZINC Whiskers	Hoor Tiles More About
32	2002	Govt Computer Center	Commercial	ZINC Whiskers	Floor Tiles This Concern
33	2002	E-Comm. Comp Center	Commercial	ZINC Whiskers	loor Tiles
34	2002	Library Computer Center	Public Service	ZINC Whiskers	Later
35	2002	GPS Receiver	Aeronautical	Tin Whiskers	RF En ure
36	2002	MIL Aerospace	MIL Aerospace	Tin Whiskers	Mounting, Hardware (nuts)
37	2002	Commercial Electronics	Power Supply	ZINC Whiskers	Mounting Hundrare
38	2003	Commercial Electronics	Telecom	Tin Whiskers	RF Enclosure
39	2003	Telecom Equipment	Telecom	Tin Whiskers	Ckt Breaker
40	2003	NASA Data Center	Ground Support	ZINC Whiskers	Floor Tiles
41	2003	Missile Program "E"	Military	Tin Whiskers	Connectors
42	2003	Missile Program "F*	Military	Tin Whiskers	Relays
			lust a Problem		

Projected Impact

Double-digit percentage failure rates are probable if action is not taken

- Based on documented tin whisker failures on China Lake Weapons Department systems that used limited amounts of tin plating
 - Failures may occur within weeks or years
 - Items in dormant storage particularly vulnerable

There are situations where failure is not an option

The Need for Speed

• The pure tin problem is with us now!

- Many programs struggling with tin problems today
- Pure tin being used despite prohibitions
- Most decisions are to "use-as-is"
 - Tin plated items incorporated into systems
 - Items essential for system functionality
- Suppliers shifting to tin plating at an increasingly rapid rate
 - By Summer 2004 it will be difficult to find anything else from some suppliers

Status of Tin Control and Mitigation Activities

- Commercial electronic component suppliers are responding to their main market : the commercial electronics industry
 - Using pure tin plate surface finishes on commercial electronic components
 - Not compatible with most military and space mission requirements

Electronic Systems

Component Suppliers Offering Both // Pure Tin and Tin-Lead Surface Finishes

01163

	Feb	oruary 2004	Courtesy Bill Rollins CALCE Tin Whisk
Dec. 2002:	Atmel IDT **	Agilent Tech Catalyst Semi	International Resistor
6 companies	Altera	Central Semi	Lelon
May 2003:	Motorola	Cirrus Logic	Electronics NEC **
17 companies	National Semi Kemet **	General Semi	Panasonic
	Alegro	Hitachi**	Rohm
Sept. 2003:	Logic Devices Micron Tech	Maxim Microchip Tech	Temic Tyco
29 companies	Vishay/Dale **		Vishay Semi **
	STMicro	Nichilon**	VLSI Tech
Feb. 2004:	Cypress **	Simtek	
46 companies	Micrel ** Phillips	AMI Appleg Davisoo	
	AMD**	Analog Devices Clare	
	ON Semi **	EPCOS AG	
	AVX**	Infineon	
	Linear Tech	International Re	ctifier

** Companies planning to drop some of their tin-lead product lines

Developer View of Tin Issue

Contracts often specify - No Sn, No Zn

- Zn is an issue for mechanical hardware
- Rare Exceptions were handled on a case-by-case basis by "specialists"
- The case-by-case approach is rapidly becoming unworkable
 - Exceptions that occurred 1-2 times/year are now encountered 3-4 times/week
 - Real flooding of assessments anticipated soon
 - Absolute bans not compatible with reasonable cost and schedule needs for most systems

How Developer Decisions are Made Today

- Tradeoffs are currently made based upon many reasons, some good, some not so good, and most non-standardized
 - Organizations that have suffered from previous bad experiences with tin whiskering tend to take a more conservative approach
 - Organizations experiencing serious cost and schedule pressures tend to take a more liberal approach
- The result is that the matching of mitigation strategies to actual operational requirements is less than optimal
 - Unnecessary costs are incurred by excessive mitigation
 - Unnecessary risks are incurred by insufficient mitigation

Those who have experienced failures are the most concerned and active

Informal Survey of Tin Control/Mitigation Activities

• Major Aerospace Companies

- Generally are very active in tin prevention and mitigation
- Coordinated by senior management
- Prohibit use whenever possible
- Take action to mitigate when pure tin must be used
- Participate in industry forums and seminars

Those who have experienced failures are the most concerned and active

Informal Survey of Tin Control/Mitigation Activities

Major Commercial Systems Manufacturers

- Recognize there are risks but allow pure tin with some restrictions (e.g., reflow or anneal, matte tin)
- No mitigation on assembled boards
- Request exemptions whenever possible

Concern but little management action

Standards Position on Tin Plating

- EIA GEB2 "Reducing the Risk of Tin Whisker-Induced Failures in Electronic Equipment"
 - Still in development
 - It is not a mandate
 - It does not contain any requirements
- Most standards support EEU requirements on lead restriction
 - Not concerned with the negative impacts of lead elimination

Electronic Systems **Timeline for Tin Whisker Risk Mitigation** TIN AVOIDANCE & TIN ADAPTATION

Center of Excellence

2004 2005 2007 2006 2003 **Supplier Surveys** No lead allowed in Europe & Japan` **Receiving Test Monitoring** for pure tin on parts Last time buys **Risk assessment metrics** Custom packaging **Robotic solder pot dip* Un-qualified processes** used with surveillance plans Conformal coat whisker control Period of inadequate **MANTECH** funded Legend: Develop Use solutions/resources Possibly not enough resources or solutions to meet mission assurance requirements August 2004

Courtesy Bill Rollins CALCE Tin Whisker Group 29

Mitigation Techniques

- 1. Matte tin (tin with a dull low gloss finish and larger grain size) is more resistant to whiskering than bright tin. It can still grow whiskers.
- 2. Annealing tin can reduce the stresses in plating that contribute to whisker growth. The benefits are limited and only short term.
- 3. Robotic solder dipping with tin-lead solder is a solution for some but not all components. Components must be handled carefully to avoid damaging them during the process.
- 4. Conformal coatings can be applied but their success is very dependent on the coating material, thickness, and application process. This complex topic requires further investigation.
- 5. Stripping the finishes and replating with lead-tin solder is possible but requires extra handling and exposure of finished parts to corrosive materials. This sets the stage for corrosion related issues.

None of these are proven to provide the required degree of protection for high reliability equipment.

ROP GRUM

Electronic System

Electronic Systems

Suggested Short Term Actions

- Provide formal education on tin whiskers and related leadfree issues
- Audit manufacturing operations to define levels of exposure
- Audit of existing hardware to understand level of exposure and degree of risk
- Establish incoming inspection procedures using X-ray fluorescence (XRF) or Energy Dispersive X-ray (EDX) to positively verify composition of incoming materials
- Issue policy guidelines regarding tin use and mitigation techniques
- Develop conformal coating whisker mitigation techniques

Suggested Longer Term Actions

• Establish a Lead-free Team to:

- Measure exposure
- Coordinate avoidance and mitigation efforts
- Develop and implement appropriate language for contracts and other documents
- Provide on-going education
- Participate in the Tin Whisker Group
- Provide senior management with progress reports and risk assessments
- Develop and implement an ongoing audit program to monitor and report the status of supplier tin mitigation efforts

op grui

NORTHROP GRUMMAN

Suggested Longer Term Actions

- Be hesitant in adopting lead-free technologies and processes
- Provide support to develop effective manufacturing processes for tin whisker mitigation and other leadfree issues
 - Conformal coating should be a first priority
- Encourage federal legislation to protect critical manufacturing technologies
- Build surveillance units to monitor critical hardware containing tin plating where normal inspection and/or testing tin whiskers are impossible

Recommended Guidelines

• AVOID PURE TIN PLATED MATERIALS

 Alloys of tin and lead are acceptable only where the alloy contains a minimum of 3% lead by weight

• PERFORM POST PROCUREMENT VERIFICATION THAT PURE TIN PLATING HAS NOT BEEN SUPPLIED

- Contractual prohibitions and/or a supplier's certification are insufficient control mechanisms
- Independent verification of all products is necessary

Recommended Guidelines

• WHEN PURE TIN PLATED MATERIALS ARE THE ONLY OPTION

- Application specific factors may be used to assess the risk of whisker-induced failures and aid in making "use as-is" or "repair/replace" decisions
 - Some factors include: circuit geometries, voltages, base metal, conformal coating, environmental life cycle, mission criticality, mission duration, collateral risk of rework, schedule, and cost
- Mitigation techniques can reduce the level of risk
 - No single mitigation technique is applicable or effective for all situations
 - Further development is needed !

There is no one solution for all tin plate applications

Information Sources

NASA Goddard Space Flight Center basic Info/FAQ

http://nepp.nasa.gov/whisker/background/index.htm

• UMD CALCE

http://www.calce.umd.edu/lead-free/

Brief History of Lead-Free Movement

Industry Lead Consumption

	Product	Consumption (%)
	Storage Batteries	80.81
-	Paints, Ceramics, Pigments, Chemicals	4.78
	Ammunition	4.69
	Sheet Lead	1.79
	Cable Covering	1.40
	Casting Metals	1.13
	Brass / Bronze Billets and Ingots	0.72
	Pipes, Traps, Extruded Products	0.72
	Solder (Excluding Electronic Solder)	0.70
$ \rightarrow $	Electronic Solder	0.49
	Miscellaneous	2.77

7 BOF103/MAPLD 2004 Source: Advancing Microelectronics, September/October 1999. p. 29

Kostic

End of Presentation

